
1

50 ways to

2

ANTHONY
DANG
KEVIN
GRIFFIN
DAVID
HANEY
TROY HUNT
ANTHONY
VAN DER
HOORN
MICHAEL
SORENS
MATTHEW
K
DAVE
WARD
NICK
HARRISON

JEREMY
JARRELL
IAN
DUNKERLY
TED
JARDINE
ANTHONY
MOORER
JULIE
BELLER
GREGORY
WHATLEY
SHAWN
BINNS
BRUCE
NORTON
STEPHEN
KEANE

Foreword

This book began as a publishing experiment:
could we make the collective wisdom of
the ASP.NET and SQL Server communities
available as an eBook? We chose performance
improvements as our topic, and started asking
for tips in November 2012.

You’re reading the results now.

We’d like to thank our panel of judges, the
LIDNUG group, and most of all the ASP.NET
community for taking part. Although we set a
strict timeframe for gathering and editing the
advice that came in, there’s no reason to stop
here. Each tip came from a fellow developer
and we’d love to gather more, so if you think
something is missing, let us know, or use
#50ASPtips to tweet about it. With your help,
we can make ASP.NET apps run faster than
Usain Bolt with cheetahs for shoes.

Michaela Murray,
.NET Tools Division at Red Gate Software. 	

dotnetteam@red-gate.com

http://www.linkedin.com/groups/LinkedNET-Users-Group-LIDNUG-43315?gid=43315&trk=group-name

4 PB4

Contents

Foreword	 3

Caching is a last resort	 6

Remove unused View Engines 	 7

Use Microsoft’s PDBs to debug or profile external 8
assemblies or libraries 	

A selection of tips	 10

Make sure paging is conducted at the database layer 13

For a snappy user experience, always validate on the 14
client

Always perform validation on the server as well 15

Review what client scripts you are using	 16

Reduce memory leaks dramatically with the 	 16	
“using” statement

Reduce the data sent across the network 	 17

Avoid running sites in debug mode	 18

When in production, carefully consider what you 	 19	
need to log	

A selection of tips	 20

Use the startMode attribute to reduce the load time 22
for your ASP.NET site

5

Don’t underestimate the value of the UI when tackling 23
performance problems	

Throw hardware at the problem, not developers	 24

Don’t assume that problems can only arise from 25	
business logic	

Before tackling any website performance issue, first 26		
verify the problem isn’t on the client	

Static collections	 27

Know your loops	 28

Seven handy ViewState tips	 29

Avoid using session state	 38

Take advantage of .NET 4.5 async constructs	 39

StringBuilder is NOT the answer for all string 40	
concatenation scenarios; String.Join could be

ORM Tips	 42

Database Performance Tips for Developers	 45

T-SQL Tips	 46

Index Tips	 48

Free eBooks from Red Gate 49

Tools from Red Gate 50

6 PB

Caching is a last resort
Anthony Dang
@anthonydotnet

Projects that use multiple levels of cache often
demonstrate a misunderstanding of why caching is
required in the first place.

Caching is not synonymous with performance. Your
code should already be efficient. Caching should only
be used as a last resort, after you’ve made all possible
(and sensible) code optimizations.

CACHING
BREAK GLASS

1

https://twitter.com/@anthonydotnet

7 PB

Remove unused View Engines
Kevin Griffin
@1kevgriff, www.kevgriffin.com

If you’re an ASP.NET MVC developer, you might
not know that ASP.NET still loads the View Engines
for both Razor and Web Forms by default. This can
cause performance issues because MVC will
normally look for Web Forms views first, before
switching over to the Razor views if it can’t
find them.

You can quickly eliminate this performance issue by
adding the following two lines to your Global.asax,
in the Application_Start():

ViewEngines.Engines.Clear();

ViewEngines.Engines.Add(

	 newRazorViewEngine());

Goodbye Web Forms View Engine!

2

https://twitter.com/@1kevgriff

8 PB

3
Use Microsoft’s PDBs to debug 		
or profile external assemblies 		
or libraries
David Haney
www.haneycodes.net, www.linkedin.com/in/davidahaney

To accurately debug or profile an external assembly
or library (i.e. one you’re not directly compiling), you
need the PDB files that accompany each of the DLLs.
These files give your debugger or profiler access to
information such as function names, line numbers,
and other related metadata.

One thing that sucks in particular is debugging and
profiling native Microsoft .NET assemblies without
this kind of information. Fortunately, there’s a
solution for this very issue. With a little-known
feature in Visual Studio 2012 (and 2010 too!), you can
connect to Microsoft’s Symbol Servers and obtain
most of the debugging symbols for their assemblies
and libraries.

http://msdn.microsoft.com/en-us/library/yd4f8bd1%28v=vs.71%29.aspx

9 PB

Just go to Tools –> Options –> (expand) Debugging
–> Symbols, and select the Microsoft Symbol Servers
as your source for Symbols.

Getting the symbols from Microsoft every time
you debug or profile is slow and painful. It’ll
even give you a pop-up saying as much once you
check the Microsoft Symbol Servers, so be sure to
specify a directory 	 under “Cache symbols in this
directory”.

It will keep a local copy of the PDBs and check for
updates every so often. As a result, you get your
regular debugging/profiling AND you can see the
function names of the Microsoft assemblies.

10 PB

A selection of tips
Troy Hunt
Microsoft MVP

4
Make sure HTTP compression is turned on for
any uncompressed content. HTML in particular
compresses significantly, and in this era of mobile
friendliness and slow 3G connections, that’s
essential.

Always set the CacheControlMaxAge attribute in
web.config to a high number (a year is good). You
don’t want people pulling down the same static
content they did last week. It’ll also save on the
bandwidth you’re paying for.

5

11 PB

Make use of the OutputCache annotation on MVC
controllers. If the server can serve from memory,
rather than going to disk or database, that’s a 		
good win.

Always profile your ORM database hits with SQL
Profiler during development. ORMs get away from
you very quickly. Before you know it, you’ve run a
query 2000 times in a loop, when you could have
retrieved all your data with a single database hit.

Watch out for lazy loading in ORMs. You shouldn’t
lazy load any entities that could be retrieved with a
single database hit.

7

8

6

12 PB

Implement different database queries in different
contexts. In the API and on a webpage, you’ll
inevitably require different entity properties, so
don’t load things you don’t need just because it’s
convenient to reuse a query.

Get MiniProfiler and configure it to always run when
you hit your site (just don’t enable it for the general
public). You’ll get detailed execution times and a big
red warning if the same database query is running
multiple times.

9

10

http://miniprofiler.com/

13 PB

Make sure paging is conducted at
the database layer
Anthony van der Hoorn
@anthony_vdh

When using grid UI controls (framework based, or
3rd party owned), you should carefully consider how
paging is implemented. Many controls implement
paging in a simplistic fashion, where the database is
required to return all available data and the control
limits what is shown. This strategy is fraught with
performance problems, as it means that all the
data in the given set must be extracted from the
database (e.g. all customers or orders). Depending
on the records involved, this could cause 		
significant problems.

11

https://twitter.com/@anthony_vdh

14 PB

For a snappy user experience,
always validate on the client
Simon Elliston Ball
@sireb

To avoid unnecessary round trips to the server,
validate form entries on the client using JavaScript
before posting them. This provides quick feedback
and makes your application feel more responsive.
Always make sure you explain your validation errors
as well. If you use complex password rules or regex
patterns, include a message to explain what the rules
are to prevent user frustration.

12

https://twitter.com/@sireb

15 PB

Always perform validation on the
server as well
Anthony van der Hoorn
@anthony_vdh

This isn’t exactly a performance tip but rather a
security tip for when people think that they could
improve performance by cutting out server-side
validation. These days, client-side validation can be
bypassed with ease, so you can’t trust what comes
from the browser. So if you think you can save some
processing cycles and bypass these steps, don’t, as
you’re actually opening massive security holes.

13

https://twitter.com/@anthony_vdh

16 PB

Review what client scripts you 		
are using
Anthony van der Hoorn
@anthony_vdh

Out of the box, many ASP.NET projects include
client script libraries which you may or may not be
using. It’s always a good idea to check what you are
using, and when.

14

Reduce memory leaks dramatically
with the “using” statement
Michael Sorens
www.linkedin.com/in/michaelsorens

If a type implements IDisposable, wrap the use of
it in a “using” statement, so that it automatically
disposes of objects properly when the block exits.

15

https://twitter.com/@anthony_vdh

17 PB

Reduce the data sent across the
network
Matthew K
@mudnug

Reducing the amount of data sent across the
network can improve application performance
significantly. Compressing CSS and JavaScript is
possible using bundling and minification. This
will reduce the number of server requests and the
amount of code sent across the wire.

16

stop{}

https://twitter.com/@mudnug

18 PB

Avoid running sites in debug mode
Dave Ward
@Encosia

When it comes to ASP.NET, one of the most
common performance blunders I see on a regular
basis is accidentally or intentionally running sites in
debug mode. Language-level optimizations, such as
using StringBuilders, Arrays instead of Lists, Switch
instead of If-Then-Else, and so on, are popular,
but when you measure their real impact, they
usually pale in comparison to optimizations at the
framework level.

17

https://twitter.com/@Encosia

19 PB

When in production, carefully
consider what you need to log
Anthony van der Hoorn
@anthony_vdh

Many people deploy to production without checking
how logging is currently configured. It is always
advisable to check whether your policy is to have
logging on or off by default and, if on, what level you
should be targeting. In addition, you should check
which targets you are outputting to, what archiving
strategy you have, and whether your logging
infrastructure allows for async logging.

18

https://twitter.com/@anthony_vdh

20 PB

A selection of tips
Nick Harrison
@neh123us

Including height and width in tags will allow
your page to render more quickly, because space can
be allocated for the image before it is downloaded.

Add script references at the bottom of the page,
because asynchronous downloads halt when a script
reference is reached. Style sheets and images can be
downloaded asynchronously.

Use a content delivery network (CDN) for hosting
images and scripts. They may be cached and it will
reduce load on your server.

20

19

21

https://twitter.com/@neh123us

21 PB

Use image sprites to retrieve smaller images in one
download.

Use AJAX to retrieve components asynchronously
that may not be needed immediately, such as the
content of a collapsed panel, content behind a tab,
and so on.

Make sure you’ve removed HTTP modules that
aren’t being used (Windows authentication, for
example), and that you’ve disabled services such as
FTP and SMTP, if you’re not using them.

23

22

24

22 PB

Use the startMode attribute to
reduce the load time for your 		
ASP.NET site
Jeremy Jarrell
@jeremyjarrell

Every time you update your site, IIS must recompile
it during the first request, so the initial request takes
significantly longer than subsequent ones. An easy
solution is to tell IIS to automatically recompile
your site as part of the update process. This can
be done using the startMode attribute in the
ApplicationHost.config file. You can even specify a
custom action to run on start-up, such as 		
pre-populating a data cache.

25

https://twitter.com/@jeremyjarrell

23 PB

Don’t underestimate the value of
the UI when tackling performance
problems
Jeremy Jarrell
@jeremyjarrell

Simple UI tricks, such as progress bars, redirecting
users’ attention using animation, or placing slower
loading sections at the bottom of a page or off-
screen, can often ‘fix’ a performance problem
without the need to tune the underlying code.
These UI tricks are an important tool to have in
your performance tuning toolbox and can be much
quicker and easier than addressing the underlying
issue. They can act as a holdover until you have the
time to devote to the core problem.

26

https://twitter.com/@jeremyjarrell

24 PB

Throw hardware at the problem, not
developers
Jeremy Jarrell
@jeremyjarrell

As developers, we often want to fix problems
with code, but don’t be afraid to ‘put the compiler
down’ and throw some hardware at the problem.
Performance problems caused by disk I/O
bottlenecks or paging out of RAM can often be
solved by a faster hard drive or more RAM. CPU-
bound bottlenecks can often be solved by a new
machine with a faster processor. As counter-
intuitive as it sounds, addressing problems by buying
a new machine or upgrading an aging one is often
much cheaper than having a developer troubleshoot,
diagnose, and correct a deep performance problem.
And the rest of your website will get a 		
performance kick to boot!

27

https://twitter.com/@jeremyjarrell

25 PB

Don’t assume that problems can
only arise from business logic
Jeremy Jarrell
@jeremyjarrell

When beginning to diagnose performance problems,
we often assume the problem is in our business
logic. Don’t forget that the areas of our code that
provide infrastructure can cause problems as well.
Areas such as HttpHandlers, HtmlHelpers, mapping,
logging, or IoC frameworks are increasingly at the
root of performance problems. While business logic
still causes its share of problems, infrastructure code
is quickly gaining in the performance problem race.

28

https://twitter.com/@jeremyjarrell

26 PB

Before tackling any website
performance issue, first verify the
problem isn’t on the client
Jeremy Jarrell
@jeremyjarrell

Traditionally, many performance problems have
been rooted in either the database or application
server. However, with the proliferation of advanced
JavaScript frameworks such as Backbone.js or
jQuery, performance problems are increasingly
starting to appear on the client. Rather than
immediately attempting to diagnose a performance
problem on the server, first use a free browser-based
tool such as Google Chrome Developer Tools to
ensure that the problem isn’t actually occurring on
the client. You may just save yourself a lot of time
tracking down performance problems on the 		
wrong end of your site.

29

https://twitter.com/@jeremyjarrell

27 PB

Static collections
Ian Dunkerly
@IDDesignsX

If a collection is static, make sure it only
contains the objects you need. If the
collection is iterated over often, then the
performance can be slow if you don’t remove
unnecessary objects. Objects in a collection
will be held in memory, even if they have
been disposed of, which can also lead to a
memory leak.

30

https://twitter.com/@IDDesignsX

28 PB

Know your loops
Ian Dunkerly
@IDDesignsX

for is the fastest way of iterating over a collection,
foreach is a little slower, and LINQ queries are
slowest.

31

https://twitter.com/@IDDesignsX

29 PB

Seven handy ViewState tips
Ted Jardine
@ovalsquare

Every time I have to deal with a classic ASP.NET Web
Forms application, one of the first things I look at
is the resulting source, to check whether the DOM
is a complete mess and whether the ViewState is an
enormous, unnecessary blob of ugliness. Usually,
they indicate what kind of mess will be found
further down the stack.

<input type=”hidden” name=”__VIEWSTATE”

id=”__VIEWSTATE” value=”/wFzY3JpcH-

Q6IE9uY2xpY2s9J3dpbmRvdy5vcGVuKCJFcXVp-

cG1lbnQtRGV0YWlscy5hc3B4P1VzZWQtMjAxMC1UZ-

XJl…(continues for 18,000 characters)…

UlVTIiB3aWR0aD=” />

Yeah baby! ‘Nuff said

32

https://twitter.com/@ovalsquare

30 PB

Inadvertently using ViewState when it’s not
necessary substantially increases the amount
of data going back and forth, and can lead to a
greater prevalence of invalid ViewState exceptions;
the bigger the blob, the more likely it could be
interrupted in transmission and not be posted back
in entirety in a post.

Unless you’re tracking a Text_Changed event, you
don’t need ViewState enabled on TextBoxes and
similar controls. Classic ASP.NET automatically
repopulates TextBox.Text values upon postback,
even without ViewState enabled. Turn it off on each
TextBox with EnableViewState= “false” on each one.
You can do this for other controls like labels, but
unless you’re setting their values after the page’s load
event, you won’t reduce the size of the ViewState.

33

31 PB

The same goes for most implementations of
Repeaters, ListViews, and so on. These are usually
the biggest culprits and they can be ugly. The
advantage of ViewState with these is avoiding having
to populate values again in a postback. If you’re
convinced that it’s worth passing ViewState back
and forth again and again to save your app the extra
database hit…well…you’re probably wrong. Save the
database hit (if you need to) with some caching and
disable that dang ViewState on that Repeater!

34

32 PB

If you’re re-binding data anyway, or just toggling one
property on postback (asp:Panel anyone?), turn off
that ViewState! Please!

35

33 PB

If you do need ViewState, understand the page
lifecycle and bind your data appropriately. A control
loads its ViewState after Page_Init and before 		
Page_Load, i.e. server controls don’t start tracking
changes to their ViewState until the end of the
initialization stage. Any changes to ViewState mean
a bigger ViewState, because you have the before
value and the after value. So, if you’re changing or
setting a control’s value, set it before ViewState is
being tracked, if possible.

36

34 PB

You may think it’s impossible to turn off ViewState
on a DropDownList, even if you re-bind it on every
postback. But with a tiny bit of elbow grease you can
keep ViewState enabled and avoid passing all your
option values back and forth. This is particularly
worthwhile for DropDownLists with a big ListItem
collection. One way is to turn off ViewState and bind
the select value manually to the actual posted value,
like so:

string selectedId = Request[Countries.

UniqueID];

if (selectedId != null)

Countries.SelectedValue = 		

selectedId;

37

35 PB

However, you may prefer something I came across
more recently. Instead of binding your DropDown-
List in the typical Page_Load or Page_Init, bind it in
the control’s Init event:

<asp:DropDownList ID=”Countries” ...

OnInit=”CountryListInit” />

protected void CountryListInit(object

sender, EventArgs e)

{

Countries.DataSource = // get data 		

from database

Countries.DataBind();

}

36 PB

Make it your habit to turn off ViewState on every
control by default, and only turn it on when you
need it. If a page doesn’t need ViewState anywhere,
turn it off at the page level. You do all that work
to reduce requests, combine and compress static
references, and make sure your code is as clean as
possible - don’t ruin it with a ViewState monster!

If you’re anal, you can completely remove all traces
of ViewState from pages that don’t need it by
inheriting from a BasePage such as this:

38

37 PB

 /// <summary>

/// BasePage providing cross-site functionality 	

for pages that should not have ViewState enabled.

/// </summary>

public class BasePageNoViewState : Page // Or of 	

course, inherit from your standard BasePage, which in

turn inherits from Page

{

protected override void SavePageStateToPersistence	

Medium(object viewState)

{

}

protected override object

LoadPageStateFromPersistenceMedium()

{

return null;

}

protected override void OnPreInit(EventArgs e)

{

// Ensure that ViewState is turned off for 		

every page inheriting this BasePage

base.EnableViewState = false;

base.OnPreInit(e);

}

}

 }

}

38 PB

Avoid using session state
Anthony van der Hoorn
@anthony_vdh

Where possible, you should try and avoid using
session state. Whilst using one web server,
performance is usually not a problem. This changes
as soon as you need to scale to multiple servers, as
different, and usually slower, techniques need to be
used.

39

https://twitter.com/@anthony_vdh

39 PB

Take advantage of .NET 4.5 async
constructs
Anthony van der Hoorn
@anthony_vdh

With the arrival of .NET 4.5, writing async code
correctly is easier than ever. Like any tool, it should
be only applied where it makes most sense – in web
use-cases this usually revolves around I/O operations
(i.e. reading from disk, any network operation,
database operations, or calls to web services).

40

https://twitter.com/@anthony_vdh

40 PB

StringBuilder is NOT the answer for
all string concatenation scenarios; 		
String.Join could be
Ted Jardine
@ovalsquare

Yes, if you are in a loop and adding to a string,
then a StringBuilder *could* be most appropriate.
However, the overhead of spinning up a
StringBuilder instance makes the following pretty
dumb:

var sb = new StringBuilder();

sb.Append(“Frankly, this is “);

sb.Append(notMoreEfficient);

sb.Append(“. Even if you are in a loop.”);

var whyNotJustConcat = sb.ToString();

41

https://twitter.com/@ovalsquare

41 PB

Instead, use String.Join, which is typically more
performant than spinning up a StringBuilder
instance for a limited number of strings. It’s my 	
go-to concat option:

string key = String.Join(“ “, new String[]

{ “This”, “is”, “a”, “much”, “better”,

solution, “.”});

The first variable of " " can just be set to "" when you
don’t want a delimiter.

For loops that do a lot of, er, looping, sure, use a
StringBuilder. Just don’t assume it’s the de facto
solution in all, or even the majority of cases. My rule
of thumb is to add strings together when I’ve got
one to five of them (likewise with String.Format if
it helps with legibility). For most other cases, I tend
towards String.Join. Only when dealing with a loop
that isn’t limited to about 10 iterations, especially
one that really lets rip, do I spin up a StringBuilder.

42 PB

ORM Tips
Anthony Moorer, Julie Beller, and Gregory
Whatley

More and more people are using Object to Relational
Mapping (ORM) tools to jump the divide between
application code that is object oriented and a
database that is storing information in a relational
manner. These tools are excellent and radically
improve development speed. But, there are a few
‘gotchas’ to know about.

Avoid following the ‘Hello World’ examples provided
with your ORM tool that turns it into an Object to
Object Mapping. Database storage is not the same as
objects for a reason. You should still have a relational
storage design within a relational storage engine
such as SQL Server.

42

43 PB

Parameterized queries are exactly the same as stored
procedures in terms of performance and memory
management. Since most ORM tools can use either
stored procedures or parameterized queries, be sure
you’re coding to these constructs and not
hard-coding values into your T-SQL queries.

43

Create, Read, Update, and Delete (CRUD) queries
can all be generated from the ORM tool without
the need for intervention. But, the Read queries
generated are frequently very inefficient. Consider
writing a stored procedure for complex Read queries.

44

44 PB

Since the code generated from the ORM can
frequently be ad hoc, ensure that the SQL Server
instance has ‘Optimize for Ad Hoc’ enabled. This will
store a plan stub in memory the first time a query is
passed, rather than storing a full plan. This can help
with memory management.

45

Be sure your code is generating a parameter size
equivalent to the data type defined within table in
the database. Some ORM tools size the parameter to
the size of the value passed. This can lead to serious
performance problems.

46

45 PB

Database Performance
Tips for Developers

As a developer you may or may not need to go into
the database and write queries or design tables and
indexes, or help determine configuration of your
SQL Server systems. But if you do, these tips should
help to make that a more pain free process.

46 PB

T-SQL Tips
Shawn Binns and Bruce Norton

While much of your code may be generated, at least
some of it will have to be written by hand. If you
are writing some, any, or all of your T-SQL code
manually, these tips will help you avoid problems.

SELECT * is not necessarily a bad thing, but it’s a
good idea to only move the data you really need to
move and only when you really need it, in order to
avoid network, disk, and memory contention on
your server.

47

47 PB

For small sets of data that are infrequently updated
such as lookup values, build a method of caching
them in memory on your application server rather
than constantly querying them in the database.

48

Ensure your variables and parameters are the
same data types as the columns. An implicit or
explicit conversion can lead to table scans and slow
performance.

49

48 PB

Index Tips
Stephen Keane and Gregory Whatley
Indexing tables is not an exact science. It requires some trial
and error combined with lots of testing to get things just right.
Even then, the performance metrics will change over time as
you add more and more data.

You get exactly one clustered index on a table.
Ensure you have it in the right place. First choice
is the most frequently accessed column, which
may or may not be the primary key. Second choice
is a column that structures the storage in a way
that helps performance. This is a must for 		
partitioning data.

50

Performance is enhanced when indexes are placed
on columns used in WHERE, JOIN, ORDER BY,
GROUP, and TOP. Always test to ensure that the
index does help performance.

51

49 PB

More free eBooks from Red Gate

Practical Performance Profiling: 		
Improving the efficiency of .NET code
by Jean-Philippe Gouigoux

Theory and practical skills to analyze and improve the
performance of .NET code. He guides the reader through
using a profiler and explains how to identify and correct
performance bottlenecks.

.NET Performance Testing and Optimization
by Paul Glavich and Chris Farrell

A comprehensive and essential handbook for anybody who
wants to set up a .NET testing environment and get the
best results out of it, or learn effective techniques for testing
and optimizing.NET applications.

Under the Hood of .NET Memory Management
by Chris Farrell and Nick Harrison

Chris Farrell and Nick Harrison take you from the very
basics of memory management, all the way to how the OS
handles its resources, to help you write the best code you
can.

http://www.red-gate.com/community/books/practical-performance-profiling
http://www.red-gate.com/community/books/practical-performance-profiling
http://www.red-gate.com/community/books/dotnet-performance-testing-complete-guide
http://www.red-gate.com/community/books/under-the-hood-dotnet-memory-management

50 PB

Tools from Red Gate

ANTS Performance Profiler
Identify bottlenecks and optimize the
performance of your application.

ANTS Memory Profiler
Find memory leaks and optimize the memory
usage of your application.

.NET Reflector
Browse, analyse, decompile and debug your 	
.NET code.

SmartAssembly
.NET obfuscator to protect your IP; plus, Error
Reporting functionality to help you ship stable
software by getting early user feedback.

.NET Demon

.NET Demon compiles your code continuously, 	
so you see errors as soon as they are introduced.

http://www.red-gate.com/products/dotnet-development/ants-performance-profiler/
http://www.red-gate.com/products/dotnet-development/ants-memory-profiler/
http://www.reflector.net/
http://www.red-gate.com/products/dotnet-development/smartassembly/
http://www.red-gate.com/products/dotnet-development/dotnet-demon/

	Foreword
	Caching is a last resort
	Remove unused View Engines
	Use Microsoft’s PDBs to debug or profile external assemblies or libraries
	A selection of tips
	Make sure paging is conducted at the database layer
	Always perform validation on 		the server
	Review what client scripts you 		are using
	Reduce the data sent across the network
	Avoid running sites in debug mode
	When in production, carefully consider what you need to log
	A selection of tips
	Use the startMode attribute to reduce the load time for your 		ASP.NET site
	Don’t underestimate the value of the UI when tackling performance problems
	Throw hardware at the problem, not developers
	Don’t assume that problems can only arise from business logic
	Before tackling any website performance issue, first verify the problem isn’t on the client
	Static collections
	Know your loops
	Seven handy ViewState tips
	Avoid using session state
	Take advantage of .NET 4.5 async constructs
	StringBuilder is NOT the answer for all string concatenation scenarios; 		String.Join could be
	ORM Tips
	T-SQL Tips
	Index Tips

